2022_Determination of distribution routes using the saving matrix method to minimize shipping costs at PT. Sukun Transport Logistics

Submission date: 08-Jul-2022 11:48AM (UTC+0700) Submission ID: 1867973786 File name: to_minimize_shipping_costs_at_PT._Sukun_Transport_Logistics.pdf (619.89K) Word count: 5128 Character count: 23236

SPEKTRUM INDUSTRI

Journal homepage : http://journal3.uad.ac.id/index.php/spektrum

DETERMINATION OF DISTRIBUTION ROUTES USING THE SAVING MATRIX METHOD TO MINIMIZE SHIPPING COSTS AT PT. SUKUN TRANSPORT LOGISTICS

Dian Erliana Febriyanti^{*}, Rangga Primadasa, Sugoro Bhakti Sutono

Prodi Teknik Industri, Universitas Muria Kudus, Kudus, 59327, Indonesia. *Corresponding author: <u>dianerlianafebriyanti@gmail.com</u>

ARTICLE INFO

ABSTRACT

Article history Received: January 2022 Accepted: April 2022

Keywords Distribution Saving matrix Vahicle routing problem PT. Sukun Transport Logistics is a company engaged in shipping, logistics and also transportation vehicle rental services. The problems faced by PT. Sukun Transport Logistics is a lack of transport vehicle capacity, causing the use of transport vehicles that are not suitable and the distribution of sub-routes is not balanced. Therefore, to overcome these problems, it is necessary to determine the optimal distribution route using the saving matrix method. The saving matrix method is a method to shorten mileage, estimate distribution time and minimize shipping costs at PT. Sukun Transport Logistics. From the results of the route research in this study, it is known that the route proposal with the saving matrix method opens 2 sub routes from the previous 3 sub routes, the total distance through the saving matrix method and the closest calculation method is 299 km. While the total distance of the actual route delivery to the company is 313 km. The distance saving of this research with the company's actual route is 14 km or 4.47%. At the time of saving of 164 minutes or 20.97%, and distribution cost savings of Rp. 141,658 or 25.53%.

This is an open access article under the <u>CC–BY-SA</u> license.

INTRODUCTION

In the industrial world, shipping or distribution has an important function in a company. One of the important things is distribution in determining the schedule and route that will be passed by shipping from one location to the location to be addressed (Zuhdi *et al.*, 2017). Distribution is a way of distributing goods used by producers to consumers so that they can be accepted by consumers quickly, precisely and in good conditions (Suparjo, 2017).

http://journal3.uad.ac.id/index.php/spektrum spektrum.industri@ie.uad.ac.id

The optimal distribution process in an industry, be it manufacturing or service, is an important issue and one of optimization. Route and vehicle scheduling planning is an important part of the transportation and distribution system (Kamal *et al.*, 2020). The vehicle route problem is a combinatorial problem in terms of the economic value of the vehicle which can change at any time in the logistics system, this problem is known as the Vehicle Routing Problem (VRP).

Vehicle Routing Problem (VRP) can be defined as a distribution delivery route determination problem which consists of a series of delivery routes centered on one or more warehouses to serve customers covering different delivery areas with their respective needs (Irman *et al.*, 2017).

PT. Sukun Transport Logistics is one of the companies engaged in shipping, logistics and also transportation vehicle rental services. The main activity of PT. Sukun Transport Logistics, namely carrying out cigarette delivery activities from one location to another. PT. Sukun Transport Logistics is required to be able to design reliable delivery performance, while the company is still determining the delivery sub route with the closest distance method from the warehouse. The problems faced by PT. Sukun Transport Logistics is the delivery of cigarette products only by considering the closest distance from the warehouse to other retailers based on analytical predictions. The company also does not consider the vehicle capacity, causing the use of vehicles that are not in accordance with the capacity and the distribution of sub-routes is less balanced.

Sub Rute	Transport Vehicle Utility
1	27,25%
2	55,50%
3	61%
Average	48,01%

From table 1, it can be seen that the average utility of transport vehicles used for distribution in October 2021 is relatively low, which is below 75% of the vehicle capacity of 400 bales with a utility value of 48.01%. The relative value of 75% is used for the feasibility of the goods sent according to the capacity of the vehicle (Humaira, 2021). This shows the use of low vehicle capacity and the use of an excessive and inappropriate number of vehicles. The application of distribution channels that have been implemented by PT. Sukun Transport Logistics has not been carried out in a balanced manner in determining the distance traveled and the number of retailers visited.

In this study, the author tries to use the Saving Matrix method which is used to determine vehicle scheduling and the Nearest Insert method tools to determine the optimal route. So as to be able to solve problems related to the Vehicle Routing Problem (VRP). Through the use of this method, it is hoped that it can minimize the distance traveled by the distribution route, distribution time, distribution costs and can increase the use of transportation vehicle utilities at PT. Sukun Transport Logistics.

RESEARCH METHOD

In general, the research method in determining vehicle routes in the distribution of PT. Sukun Transport Logistics uses the Saving Matrix method. In processing the data of this study using quantitative methods. The first thing to do in data processing using this research is (A) the formation of sub-routes using the saving matrix method where the identification of the distance matrix, identification of the savings matrix, allocating the destination of the delivery route, and the identification of the route sequence with the nearest insert method are carried out (Yetrina dan Nainggolan, 2021). The next steps (B) calculate the standard time available, (C) determine the number of transport vehicles and (D) calculate distribution costs. The steps taken in processing this data can be seen in Figure 1.

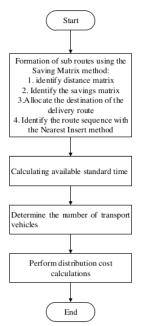


Figure 1. Data Processing Flowchart

Formation of Sub Routes Using the Saving Matrix Method

In the formation of sub routes, the saving matrix method is used. The saving matrix method is essentially a method to minimize distance or costs by considering existing constraints (Supriyadi et al., 2017). In the formation of the sub route is divided into several stages, including:

- 1. Identifying the Distance Matrix
- 2. Identifying the Distance Matrix is the collection of the distance between the warehouse and the location of each customer and the distance between locations. Knowing the coordinates of each location, the distance between two locations can be calculated as using the standard formula (Ahmad dan Muharram, 2018).
- 3. Identifying the Savings Matrix
- Saving Matrix represents the savings that can be realized by merging 2 or more retailers in 1 route 4. (Aprilia, 2019).
- 5. Allocating Destination Shipping Routes
- 6. Merger starts with the highest savings value, because it aims to maximize savings and classify stores (destinations) according to a predetermined route (Abdurrahman et al., 2019).
- 7. Route Sequence Identification With Nearest Insert Method
- 8. In principle, the purpose of this sorting is to minimize the travel distance of the conveyance (Fitri, 2018). The method used is the nearest insert method. The Nearest Insert method is the shortest journey, using the principle of selecting a store which, inserted in the existing route, results in the minimum additional distance (Suryani et.al., 2018).

Calculating Available Standard Time

The calculation of the total time for the distribution sub-routes that have been determined is as follows.

- Vehicle setup time = 15 minutes
- $=\frac{travel distance}{c}$ Total travel time
- average speed
- Warehouse loading time = 30 minutes
- Unloading time on each sub route = number of retailers x 5 minutes

Determination of Distribution Routes... (Febriyanti, et.al.)

 Total time = vehicle setup time + total travel time + warehouse loading time + unloading time on each sub route

Determining the Number of Transport Vehicles

The number of transport vehicles needed can be formulated: Number of transport vehicles required = $\frac{total time}{Availability}$

Availability of transport vehicles is the amount of time available for transport vehicles to operate. The daily availability of transport vehicles is 420 minutes.

Calculation of Distribution Costs

Transportation costs for transport vehicles consist of operational costs (fuel costs, parking fees, lunch costs) and maintenance costs. Maintenance costs do not need to be compared because they are not discussed in this study. In carrying out the delivery process, the company uses transport vehicles with a capacity of 400 bales. vehicles use fuel using a ratio of 1: 10, meaning that with 1 liter of material the distance traveled by the transportation equipment is 10 km (Humaira, 2021).

RESULTS AND DISCUSSION

Data Collection

1. Retailer Location Data

The data collection carried out in this study is location data at each retailer that is the destination of delivery by PT. Sukun Transport Logistics. The data for the location of the distributor shop can be seen in table 2.

No.	Code	Retail Name	Retail Address
1	G	Sukun Cigarette Warehouse	JI. PR. Sukun Gondosari Gebog Kudus
2	R1	Core Earth Mani shop	Tawangsari, Babagan Lasem
3	R2	gansar shop	jl. Pajeksan juwana pati
4	R3	prosperous shop	jl. Pajeksan juwana pati
5	R4	sidodadi shop	jl. Pajeksan juwana pati
6	R5	long shop	jl. Pajeksan juwana pati
7	R6	five-five toko shop	jl. Pajeksan juwana pati
8	R7	eternal glory shop	jl. Pajeksan juwana pati
9	R8	rene shop	JI. Yossudarso Smberjo Rembang
10	R9	yield shop	JI Airlangga, Sumberjo Rembag
11	R10	swan shop	JI Dr. Wahidin Rembang
12	R11	good boy shop	jl. National 17 Rembang
13	R12	Yup Susilo shop	jl. Dr, Sutomo Pati City
14	R13	fanny shop	Karangturi, babagan lasem
15	R14	corner shop	Tawangsari, Babagan Lasem
16	R15	tan soe thay shop	JI Slamet Riyadi, Sumberjo, Rembang
17	R16	shop 299	stop by, city of pati

2. Product Request Data

The following is the number of requests for Sukun cigarettes to retailers in September 2021 which is used to design distribution routes to be more optimal. The number of data on cigarette shipments to each retailer can be seen in table 3.

Store Name	demand for cigarette products											
	MW	IST	2000	SSB	SPC 12	SPC	EXC 12	EXC	MGNO	Bales per		
	12	10		12		16		16	12	Shop		
Core Earth							1,600			8		
Mani shop												
gansar shop				100	200	1,600	6,400	1,600		49		
prosperous	800		800			400	18.000	4,400	200	123		
shop												
sidodadi	200			10			2,400	400		15		
shop							E 600	400		30		
long shop							5,600	400	000			
five-five toko							5,600	1,200	200	35		
shop eternal glory							1,600			8		
shop							1,000			0		
rene shop							2,300			12		
vield shop	200			20		2,000	_,	1,600	100	19		
swan shop	400		200	400	200	2,000	15,400	5,600	200	122		
good boy	100		200	100	200	200	800	0,000	200	5		
shop						200	000			5		
Yup Susilo							400			2		
shop										-		
fanny shop	400		200	200	200	2800	8.000			59		
corner shop						800	4,000	800		28		
tan soe thay	800			200	400	2800	17.600	5,600	200	138		
shop							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
shop 299	800		800	400		200	15,000	4,000	200	107		

Data processing

1. Sub-Route Formation

The following are the steps for establishing a cigarette delivery distribution sub route using the saving matrix method.

- a. determining the delivery route for cigarette products. The distance between each retaldentifying the Distance Matrix. The distance between warehouses and retailers owned by the company is used in iler can be seen in tabel 4.
- b. Identifying the Saving Matrix

At this stage, it is assumed that each retail will be visited by one vehicle which will lead to 16 different routes and each in one destination. For the calculation of distance savings can use the equation.

S(x,y) = J(G,x) + J(G,y) - J(x,y)

Where :

```
S(x,y) = distance saving
```

J(G, x) = distance from warehouse to retail x

J(G, y) = distance from warehouse to retail y

J(x,y) = retail distance x to retail y

The following is an example of calculating the distance for retailers R1 and R2 using the formula above:

S(R1, R2) = J(G, R1) + J(G, R2) - J(R1, R2)

= 89 km

The calculation of distance savings for each retailer can be seen in table 5.

87

Determination of Distribution Routes... (Febriyanti, et.al.)

6 10.12198/spektrum.v20i1.18

R	G	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16
(KM)																	
G																	
R1	79																
R2	45	35															
R3	45	35	0														
R4	45	35	0	0													
R5	45	35	0	0	0												
R6	45	35	0	0	0	0											
R7	45	35	0	0	0	0	0										
R8	67	13	22.	22.	22.	22.	22.	22.									
			2	2	2	2	2	2									
R9	67.	12.9	22.	22.	22.	22.	22.	22.	0.								
	1		1	1	1	1	1	1	1								
R10	67.	12.7	22	22	22	22	22	22	0.	1.							
	3								2	5							
R11	66	11	23	23	23	23	23	23	1	1.	1.6						
										7							
R12	32	47	13	13	13	13	13	13	36	35	35	36					
R13	80	1.6	35	35	35	35	35	35	14	14	14	12	48				
R14	79	1	34	34	34	34	34	34	13	13	13	11	47	1.4			
R15	68	14	25	25	25	25	25	25	24	1.	2.6	3.3	38	15	13		
-				-	-	-	-			5	-		_	_			
R16	35	47.2	12	12	12	12	12	12	43	35	35	36	1.7	48	47	43	

	2				Tab	ole 5.	Cost I	Matrix	betwee	en Reta	ilers					
R	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R1	R13	R1	R1	R1
(KM												2		4	5	6
2																
R1	0															
R2	89	0														
R3	89	90	0													
R4	89	90	90	0												
R5	89	90	90	90	0											
R6	89	90	90	90	90	0										
R7	89	90	90	90	90	90	0									
R8	133	89.	89.	89.	89.	89.	89.	0								
		8	8	8	8	8	8									
R9	133.	90	90	90	90	90	90	134	0							
	2															
R10	133.	90.	90.	90.	90.	90.	90.	134.	132.	0						
	6	3	3	3	3	3	3	1	9							
R11	134	88	88	88	88	88	88	132	131.	131.	0					
									4	7						
R12	64	64	64	64	64	64	64	63	64.1	64.3	62	0				
R13	157.	90	90	90	90	90	90	133	133.	133.	134	64	0			
	4								1	3						
R14	157	90	90	90	90	90	90	133	133.	133.	134	64	157.	0		
									1	3			6			
R15	133	88	88	88	88	88	88	111	133.	132.	130.	62	133	134	0	
									6	7	7					
R16	66.8	68	68	68	68	68	68	59	67.1	67.3	65	65.	67	67	60	0
												3				

c. Allocating Retailers to Routes

Table 5 can be done to allocate retailers into routes. In the early stages, each retailer is allocated a different route. So as in table 6 below, there are 16 initial routes. On the 16 routes, it can be combined with the greatest saving value. The first biggest savings start from 157.6 km which is the distance savings from combining R13 and R 14. The total load is:

Determination of Distribution Routes... (Febriyanti, et.al.)

= Reban R13 + Load R 14 = 59 Bal + 28 Bal

= 87 Bal

Where 87 bales 400 bales so that merging can be done and can be seen in tabel 6.

		2						. /	Jating	retailer	5 10 10	ates					
R	Route	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16
(KM)																	
R1	R 1	0															
R2	R 2	89	0														
R3	R 2	89	90	0													
R4	R 2	89	90	90	0												
R5	R 2	89	90	90	90	0											
R6	R 1	89	90	90	90	90	0										
R7	R 1	89	90	90	90	90	90	0									
R8	R 2	133	89.8	89.8	89.8	89.8	89.8	89.8	0								
R9	R2	133.2	90	90	90	90	90	90	134	0							
R10	R 2	133.6	90.3	90.3	90.3	90.3	90.3	90.3	134.1	132.9	0						
R11	R 1	134	88	88	88	88	88	88	132	131.4	131.7	0					
R12	R 1	64	64	64	64	64	64	64	63	64.1	64.3	62	0				
R13	R 1	157.4	90	90	90	90	90	90	133	133.1	133.3	134	64	0			
R14	R 1	157	90	90	90	90	90	90	133	133.1	133.3	134	64	157.6	0		
R15	R 1	133	88	88	88	88	88	88	111	133.6	132.7	130.7	62	133	134	0	
R16	R 1	66.8	68	68	68	68	68	68	59	67.1	67.3	65	65.3	67	67	60	0
(Bales)		8	49	123	15	30	35	8	12	19	122	5	2	59	28	138	107

So that the sub-routes formed are two sub-routes, namely:

- Sub route 1 selected retailer : [G R 1 R6 R7 R11 R12 R13 R14 R15 R16 G]
- Sub route 2 selected retailers : [G R2 R3 R4 R5 R8 R9 R10 G]

d. Sorting Retailers in Sub Routes

After locating the retailer to the sub route that has been done, the next step is to determine the order of visits as shown in table 7 and table 8.

Retailers	G	R1	R6	R7	R11	R12	R13	R14	R15	R16
(km)										
G	0	79	45	45	66	32	80	79	68	35
R1		0	35	35	11	47	1.6	1	14	47.2
R6			0	0	23	13	35	34	25	12
R7				0	23	13	35	34	25	12
R11					0	36	12	11	3.3	36
R12						0	48	47	38	1.7
R13							0	1.4	15	48
R14								0	13	47
R15									0	43
R16										0

 Table 7. Distance from Warehouse to Retailer and Distance Between Retailers Sub Route 1

The resulting sub route for sub route 1 is G - R12 - R16 - R6 - R7 - R11 - R15 - R14 - R1 - R13 - G with a distance of 32 + 1.7 + 12 + 0 + 23 + 13 + 1 + 1, 6 + 80 = 164.3 km.

ڬ 10.12198/spektrum.v20i1.18

Total load

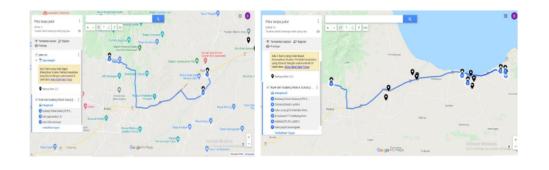
Retailers	G	R2	R3	R4	R5	R8	R9	R10
(km)								
G	0	45	45	45	45	67	67.1	67.3
R2		0	0	0	0	22.2	22.1	22
R3			0	0	0	22.2	22.1	22
R4				0	0	22.2	22.1	22
R5					0	22.2	22.1	22
R8						0	0.1	0.2
R9							0	1.5
R10								0

The resulting sub route for sub route 2 is G - R2 - R3 - R4 - R5 - R9 - R8 - R10 - G with a distance of 45 + 0 + 0 + 0 + 22.1 + 0.1 + 0.2 + 67, 3 = 134.7 km

Troubleshooting Analysis

1. Distribution sub route analysis

The proposed sub-route formation has taken into account the distance traveled and the use of the capacity of the conveyance used in distributing the goods. The formation of the sub-route starts from the merging of two retailer areas that have the largest distance savings, but by taking into account the total load transported (Martono and Warnars, 2020). Comparison between distribution sub routes used by PT. Sukun Transport Logistics with Sub Routes proposed using the saving matrix method can be seen in table 9. When depicted in the form of a map can be seen in figure 2 - figure 4.


 Table 9. Comparison of Distribution Sub Routes

Company Sub	Order	Sub-Route		Order
Route		Saving	Matrix	
		proposal		
1	G – R12 – R16 – G	1		G – R12 – R16 – R6 –R7 – R11 – R15
				– R14 – R1 – R13 – G
2	G – R1 – R10 – R11 – R13	2		G – R2 – R3 – R4 – R5 – R9 –R8 –
	– R14 – G			R10 – G
3	G – R2 – R3 – R4 – R5 –			
	R6 – R7 – R8 –R9 – R15			
	– G			

2. Company Initial Sub Route

Sub Route 1: G – R12 – R16 – G

Determination of Distribution Routes... (Febriyanti, et.al.)

Figure 2. Sub route 1 company

Figure 3. Sub-route 2 companies

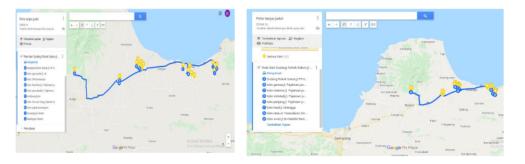


Figure 4. Sub-route 3 companies

3. Saving Matrix proposed sub route

Sub Route 1: G – R12 – R16 – R6 –R7 – R11 – R15 – R14 G – R2 – R3 – R4 – R5 – R9 –R8 – R10 – G – R1 – R13 – G

Figure 5. Sub-route 1 proposed saving matrix

From Table 9 there is a reduction in the sub-routes built on the suggested distribution route using the Saving Matrix method compared to the sub-routes that the company has run so far. Each of the proposed distribution routes has 2 sub routes, while the company's distribution routes have 3 sub routes. All sub routes use vehicles with the same capacity. Figure 2 - 6 is the result of a comparison of the company's sub-routes with the supply sub-routes using the saving matrix method.

Determination of the optimal delivery distribution route is influenced by the distance to be traveled in the process of distributing goods. The further the distance traveled, the longer the travel time of the transport vehicle used and conversely the shorter the distance traveled, the time required to carry out the distribution process will be shorter. (Supardi and Sianturi, 2020). The distance traveled from the initial and proposed distribution sub-routes is shown in the following table:

Company Sub Route	Company Mileage (km)	Sub-Route Matrix proposal	Saving	Proposed (km)	Mileage
1	49.7	1		164.3	
2	117.9	2		134.7	
3	145.4	-		-	
Total	313	Total		299	

distance saving

 $=\frac{total initial distance-total proposed distance}{x 100\%}$ total initial distance

$$= \frac{313 - 299}{313} \times 100\%$$
$$= \frac{14}{313} \times 100\% \approx 4.47\%$$

Based on the above calculation, it can be seen that the mileage savings in cigarette shipments is 4.47% from the company's initial mileage.

4. Distribution Time Analysis

From the available distribution time, which is 420 minutes, a good sub route has a time below the available distribution time. The feasibility of each sub route can be seen in table 11.

Sub Route	Available (Minutes)	Time	Distribution Time	Feasibility	
			Company Route	Saving Matrix	Estimate
				Proposed Route	
1	420		114	336	Feasible
2	420		273	282	Feasible
3	420		395		
Total			782	618	

Time saving	$=\frac{total initial time-total proposed time}{total optimized time} \times 100\%$			
Time saving	total start time			
	$=\frac{782-618}{782} \times 100\%$			
	$=\frac{164}{782}$ x 100%			
	= 20.97%			

Based on the calculation above, it can be seen that the distribution time of cigarette delivery is 20.97% from the company's initial distribution time.

5. Distribution Cost Analysis

Comparison of the distribution costs of transport vehicles on the proposed sub-route with the sub-route used by the company can be seen in table 12.

Sub Route	Company Distribution Costs (IDR)	Proposed Distribution Fee (IDR)
1	50,718	222,442
2	219,800	190,618
3	284,200	
Total	554,718	413.060

Cost savings $= \frac{\text{total initial cost-total proposed cost}}{\text{total initial cost}} \times 100\%$ $= \frac{554.718 - 413.060}{554.718} \times 100\%$ $= \frac{141.658}{554.718} \times 100\%$ = 25.53%

Based on the calculation above, it can be seen that the distribution cost savings for cigarette shipments is 25.53% from the company's initial distribution costs. 6. Analysis of the Number of Transport Vehicles and Utilities

Determination of Distribution Routes... (Febriyanti, et.al.)

The determination of the number of transport vehicles allocated by the company is influenced by the total time required for transport vehicles to distribute products and the amount of time available for transport vehicles to be operated. The less the total time required to distribute the product, the less the number of transport cars allocated to product distribution.Paillin and Kaihatu, 2018).

By using the saving matrix method, PT. Sukun Transport Logistics can save distribution costs by only allocating 2 units of transport vehicles on the type of colt diesel with a capacity of 400 bales from 2 different vehicles previously. Where the company's initial delivery used 1 unit of colt diesel vehicle with a capacity of 400 bales and 1 unit of kuzer vehicle with a capacity of 700 bales. so as to maximize the load capacity of the vehicle and minimize shipping costs.

The calculation of the utility obtained from the demand for each sub route divided by the capacity of the conveyance, the results of the calculation of the average utility are:

= x 100% number of goods transported Sub Route 1 Utility conveyance capacity $=\frac{370}{400} \times 100\%$ = 92.5% = x 100% number of goods transported Sub Route 2. Utility conveyance capacity $=\frac{390}{400} \times 100\%$ = 97.5% Σsub route utility Average utility = delivery quantity = 92,5 +97,5 2 = 95%

From the calculation of the average utility is 95%, the result of this calculation is an increase from the company's actual utility which is 48.01%.

CONCLUSIONS

The formation of sub-routes on the proposed route using the saving matrix method resulted in fewer sub-routes than the distribution route applied by PT. Sukun Transport logistics in product distribution to 16 retailers in the Juwana and Rembang areas while still using 2 transport vehicles, where the proposed sub-routes obtained are 2 sub-routes. First sub routeG - R12 - R16 - R6 - R7 - R11 -R15 - R14 - R1 - R13 - Gwith the total distance obtained is 164.3 km and sub route 2G - R2 - R3 -R4 - R5 - R9 - R8 - R10 - Ghas a distance of 134.7 km. The comparison of the distance on the company's initial route with 3 sub routes has a distance of 313 km while the proposed route with the saving matrix method produces a more optimal route than the total distance of the distribution route applied by the company, which obtains 2 sub routes with a total distance of 299 km. So that the mileage savings of 14 km or 4.47%. The comparison of distribution time on the company's initial route with 3 sub routes has an estimated time of 782 minutes, while the proposed route using the saving matrix method obtains 2 sub routes with a total time of 618 minutes and the estimated feasibility is feasible. So that the time savings of 164 minutes with a percentage of savings of 20.97%. Comparison of distribution costs on the company's initial route with 3 sub routes of Rp554,718. Meanwhile, the proposed route using the saving matrix method obtained 2 sub routes with a total distribution cost of Rp. 413.060. So that the distribution cost savings of Rp. 141,658 or 25.53%.

REFERENCES

- Abdurrahman, A. F., Ridwan, A. Y. dan Santosa, B. (2019). 'Penyelesain Vehicle Routing Problem (VRP) dalam Penugasan Kendaraan dan Penentuan Rute untuk Meminimasi Biaya Transportasi pada PT. XYZ dengan Menggunakan Algoritma Genetika'. *Jurnal Teknik Industri*, vol 9, no.1, pp. 16–24.
- Ahmad, F. and Muharram, H. F. (2018). 'Penentuan Jalur Distribusi Dengan Metode Saving Matriks'. Competitive. 13(1), pp. 45–66.

🤨 10.12198/spektrum.v20i1.18

- Aprilia, N. (2019). 'Penerapan Metode Saving Matrix Untuk Meminimasi Biaya Pengiriman Produk Kemasan Pada PT XYZ'. *Teknik Industri*. 1(1), pp. 5–9.
- Fitri, S. R. (2018). 'Optimasi Jalur Distribusi Produk Dengan Menggunakan Metode Saving Matrix Untuk Penghematan Biaya Operasional'. *Journal Valtech*. 1(1), pp. 103–109.
- Humaira, C. (2021). Penentuan Rute Distribusi Optimal Menggunakan Metode Saving Matrix Dan Clarke & Wright Savings Pada Pt. Pos Indonesia Binjai. *Skripsi*. Departemen Teknik Industri Fakultas Teknik, Universitas Sumatera Utara, Medan.
- Irman, A., Ekawati, R., dan Febriana, N. (2017). 'Optimalisasi Rute Distribusi Air Minum Quelledengan Algoritma Clarke & Wright Saving dan ModelVehicle Routing Problem'. Jurnal Seminar Nasional Inovasi dan Aplikasi Tekologi di Indonesia. Hal: 1-7.
- Kamal, D. M., Nafisah, L., dan Khannan M. S. A. (2020). 'Analisi Penentuan Rute Distribusi Dengan Pendekatan Vehicle Routing Problem Mepertimbangkan Time Windows dan Permintaan Untuk Meminimasi Biaya Transportasi Studi Kasus di CV. Twin Setia Yogyakarta'. *Prosiding Industrial Engineering Conference*, 7(1). Pp. 1–3.
- Martono, S. dan Warnars, H. L. H. S. (2020). 'Penentuan Rute Pengiriman Barang Dengan Metode Nearest Neighbor'. *Petir.* 13(1). pp. 44–57.
- Paillin, D. B. dan Kaihatu, F. M. (2018) 'Implementasi Metode Saving Matrix Dalam Penentuan Rute Terbaik Untuk Meminimumkan Biaya Distribusi (Ud. Roti Arsita)'. *Arika*. 12(2), pp. 123–140.
- Supardi, E. dan Sianturi, R. C. (2020). 'Metode Saving Matrix Dalam Penentuan Rute Distribusi Premium Di Depot SPBU Bandung'. *Jurnal Logistik Bisnis*. 10(1), p. 89.
- Suparjo. (2017). 'Metode Saving Matrix Sebagai Metode Alternatif Untuk Efisiensi Biaya Distribusi Studi Empirik Pada Perusahaan Angkutan Kayu Gelondongan Jawa Tengah'. *Media Ekonomi dan Manajemen.* 32(2), pp 137-153.
- Supriyadi, Mawardi, K. dan Nalhadi, A. (2017) 'Minimasi Biaya Dalam Penentuan Rute Distribusi Produk Minuman Menggunakan Metode Savings Matrix'. Seminar Nasional Institut Supply Chain dan Logistik Indonesia (ISLI). pp.1–7.
- Suryani, S., Kuncoro, K. R. dan Fathimahhayati, L. D. (2018) 'Perbandingan Penerapan Metode Nearest Neighbour Dan Insertion Untuk Penentuan Rute Distribusi Optimal Produk Roti Pada Ukm Hasan Bakery Samarinda'. *PROFICIENSI: The Journal of the Industrial Engineering Study Program.* 6(1), pp. 41–49.
- Yetrina, M. dan Nainggolan, D. S. (2021). 'Penentuan Rute Distribusi Untuk Meminimasi Biaya Distribusi di UKM Habil Snack'. *Jurnal Teknologi Dan Sistem Informasi Bisnis*, 3(1), pp. 247–253.
- Zuhdi, M., Andrawina, L., dan Rendra, M. (2017). 'Meminimasi Biaya Transportasi Dengan Heterogeneous Fleet Dan Time Window Menggunakan Metode Algoritma Genetika Di PT . Xyz'. *Jurnal Industrial Servicess*, 3(1), pp. 1–5.

Determination of Distribution Routes... (Febriyanti, et.al.)

2022_Determination of distribution routes using the saving matrix method to minimize shipping costs at PT. Sukun Transport Logistics

ORIGINALITY REPORT			
9% SIMILARITY INDEX	9% INTERNET SOURCES	3% PUBLICATIONS	% STUDENT PAPERS
PRIMARY SOURCES			
1 Internet Sour			6%
2 id.123do			3,

Exclude quotes	On	Exclude matches	< 3%
Exclude bibliography	On		