Characterization of Polymeric Chemiresistors for Gas Sensor

by Budi Gunawan

Submission date: 30-Mar-2022 04:22PM (UTC+0700)

Submission ID: 1796821387

File name: Characterization_of_Polymeric_Chemiresistors_for_Gas.pdf (102.94K)

Word count: 2775

Character count: 14078

Characterization of Polymeric Chemiresistors for Gas Sensor

Budi Gunawan^{1*}, Muhammad Rivai², Hendro Juwono³

¹Department of Electrical Engineering, Faculty of Engineering, Universitas Muria Kudus, Kudus, Indonesia ²Department of Electrical Engineering, Faculty of Industrial Engineering, ITS, Surabaya, Indonesia ³Department of Chemical, Faculty of Mathematics and Nature Sciences, ITS, Surabaya, Indonesia e-mail: budi.gunawan13@yahoo.com

Abstrak

Polimer merupakan materi non konduktifyang dapat menjadi konduktif dengan menambahkan karbon aktif sebagai filler sehingga terbentuk komposit polimer-karbon. Komposit polimer-karbon mempunyai resistansi berubah apabila terkena gas. Konduktifitas komposit polimer-karbon sebagai sensor gas dipengaruhi oleh beberapa faktor, yaitu; jenis gas yang dideteksi, volume gas, suhu dan kelembaban. Untuk mengetahui karakteristik sensor komposit polimer-karbon, telah dibuat sensor polimer dari 6 jenis bahan, yaitu; PEG6000, PEG20M, PEG200, PEG1540, silikon dan squelene. Sensor polimer yang dibuat diuji dengan 9 jenis gas, yaitu; Aseton, Aseton Nitril, Benzena, Etanol, Metanol, Etil Aseton, Kloroform, n-Hexan dan Toluena. Pengujian mengelompokkan menjadi 4 klaster; selektivitas, sensitivitas, pengaruh suhu dan kelembaban. Sensor diuji dalam sebuah chamber terisolasi yang terhubung dengan akuisisi data. Variasi suhu, kelembaban, jenis dan volume gas diberlakukan dalam chamber. Pengolahan data menggunakan koresponden analisis dan regresi. Hasil pengujian didapatkan bahwa setiap sensor dari jenis polimer yang berbeda mempunyai sentifitas dan selektifitas terhadap jenis gas tertentu. Resistansi sensor mengalami kenaikan dengan kenaikan suhu dan kelembaban lingkungan dengan persamaan garis polinomial orde 2 dan orde 3.

Kata kunci: polimer, resistansi, selektifitas, sensitifitas, sensor gas

Polymer is a non conductive materialthat can be conductive with carbon black filler to form polymer-carbon composite. polymer-carbon composite's resistance changes with gas. The conductivity of polymer-carbon composite is influenced by several factors, i.e. type of gas, volume of gas, temperature and humidity. This research characterizes the polymer-carbon composite sensor from 6 types of polymers: PEG6000, PEG20M, PEG200, PEG1540, Silicon and Squelene. The sensors are treated with Aceton, Aceton Nitril, Benzene, Etanol, Methanol, Ethyl Aceton, Chloroform, n-Hexan and Toluene. This characterization are grouped into 4 cluster according to their selectivity, sensitivity, influence of temperature and humidity. sensors are put in an isolated chamber which is connected to data acquisition with the variations of temperature, humidity, type and volume of gas. Correspondence analysis and regression are used to process the data. Test results found that each sensor showed different sensitivity and selectivity towards particular type of gas. Resistance of sensors increases with rising temperature and humidity environment with order 2 and order 3 polynomial equation

Keywords: gas sensor, polymer, resistance, selectivity, sensitivity

Copyright © 2012 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Polymer is one of the chemical matters, which is non conductive naturally. Some types of Polymer can be changed into conductive by adding active carbon. The mixtures of polymer and active carbon are called polymer-carbon composite. The resistance of polymer-carbon composite may change when it is exposed by gas. Each type of polymer has been different resistances. By having the following characteristic polymer-carbon composite can be used as the chemiresistor sensors [1-5].

The change of the resistance of polymer affected by several factors such the types of gas, the volume of gas, the temperature and the humidity [6-8]. To find out the characteristic of composite polymer-carbon sensor, it has been made the sensor from the six types of polymer,

276 ■ e-ISSN: 2087-278X

namely: polyethylene glycol (PEG) 6000, PEG 1540, PEG 20M, PEG 200, silicone, and squalene. The six types of sensor were tested by nine types of gas, for instance; acetone, acetone nitrile, benzene, ethanol, methanol, ethyl acetone, chloroform, n-hexane and toluene [9-15].

2. Research Method

The process of making Chemiresistor sensor is as follows: the polymer is mixed with active carbon in the ratio 1:1, used as a coupling agent who is utilized sodium lauryl sulfate (SLS) 001 gr. The mixing process involves PEG, active carbon and sodium lauryl sulfate (SLS) which are blended in a beaker glass. After that, the mixture was added with aquademin to form a gel. Then the gel is glazed on the board. Next, the board is put into the oven for two hours at 40°C. Finally, the board placed in desiccators for 1x24 hours to neutralize the content of oxygen or other gases.

Equipment that is used in this research involves isolated chamber, data acquisition, computers, temperature and humidity sensors, gas injection, nitrogen gas, water heaters and water spray, as shown Figure 1. The six types of sensor are tested in an isolated chamber simultaneously. The result will be read by the acquisition data in real time, and it will be saved as a file. The following is the picture of a tested scheme.

The principle of chamber works as follows: The six polymer sensors are placed in the chamber in a row. Sample gas is injected into the chamber in varying the volume of gas. The test is conditioned in different temperature. The result of data will be acquired by acquisition data, which connect to computer directly.

3. Results and Discussion

3.1. Sensor response to the type of gas

In testing, the nine types of gas are injected into the same of volume, temperature and humidity in the chamber. The results of the data are shown in Table 1.

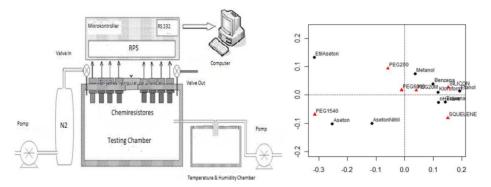


Figure 1. The testing scheme

Figure 2. Mapping selectivity of polymer using R program

Table 1. Resistance Polymer toward the Type of Gas

	PEG6000	PEG20M	PEG200	PEG1540	SILICON	SQUELENE
	(Ohm)	(Ohm)	(Ohm)	(Ohm)	(Ohm)	(Ohm)
Acetone	319	397	5245	4887	2468	4499
AcetoneNitrile	421	648	6170	5971	5231	6218
Benzena	319	547	5403	2719	4762	5022
Cloroform	357	572	6462	3034	5084	6569
Ethanol	338	548	5635	2278	5078	6176
Ethyl Acetone	357	472	7270	5152	3373	2974
Methanol	357	463	5536	2766	4157	4392
n-Hexane	317	423	4104	2436	4161	4585
Toluena	337	443	5336	2590	4462	6035

TELKOMNIKA Vol. 10, No. 2, June 2012: 275 - 280

Correspondence analysis method in R program is used to see the correlation between the polymer and gas sample, shown in Figure 2.

The picture above shows that the PEG6000 and PEG20M are similar to Silicone with Squelene. PEG1540 and PEG200 have different reaction, and they are not interconnected. The nine gases are clustered into three sections based on the position of nearness between the gases. The first group consists of acetone, and acetone nitrile. The second group consists of methanol, benzene, ethanol, chloroform, toluene and n-hexane. The third group consists of ethyl acetone gas.

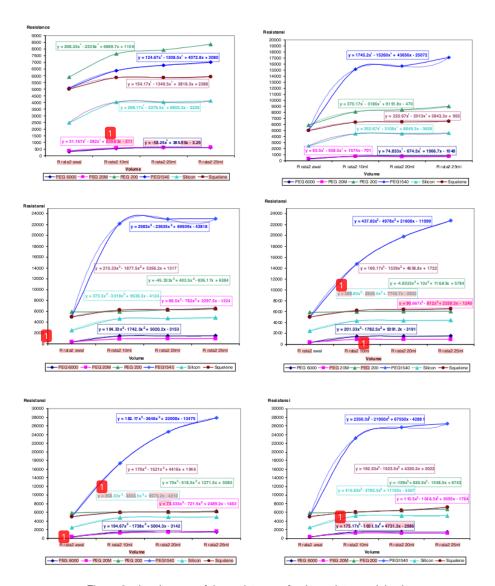


Figure 3. the changes of the resistance of polymer into gas injection

278 ■ e-ISSN: 2087-278X

3.2. Sensor response to the volume of gas

The nine types of gas are injected in varying volume at constant temperature and humidity. To see the changes of the resistance of polymer into gas injection, plotting graphs are made, shown in Figure 3.

3.3 Sensor response to the temperature

To test the effect of temperature, polymer sensors are tested in a chamber by varying temperature conditions in the same of fixed volume of gas and fixed humidity. This test was carried out to find the effect of the rising of temperature to the change of the resistance of each sensor. The average percentages of resistance increases to the rising of temperature and influenced coefficient temperature (ohm/0C). Below are the pictures of the percentage of the average of temperature's resistance.

In the Table 2 shows that all polymer resistance increases with increasing temperature. The average percentage increase in the range 3% to 29% with the largest increase in polymer PEG1540 and smallest in the silicone.

In the Table 3 shows that all polymer resistance increases with increasing temperature. Average temperature coefficient (ohm/c) range at 36 ohms to 437 ohms with the largest increase in the polymer PEG1540 and the smallest in the PEG6000

Table 2. Percentage of resistance change						
Polimer	Acetone	AcetoneNitrile	Benzena	Chloroform	Ethanol	
PEG6000	11%	14%	4%	4%	5%	
PEG20M	7%	27%	24%	0%	3%	
PEG200	14%	31%	21%	16%	23%	
PEG1540	18%	31%	37%	31%	28%	
SILICONE	0%	3%	3%	3%	4%	
SQUALENE	5%	2%	12%	4%	1%	
	EtilAcetone	Methanol	nHexane	Toluena	%average	
PEG6000	4%	5%	7%	4%	6%	
PEG20M	2%	0%	1%	3%	22%	
PEG200	22%	17%	17%	10%	19%	
PEG1540	36%	12%	35%	31%	29%	
SILICONE	2%	2%	5%	3%	3%	
SQUALENE	2%	1%	7%	8%	5%	

Table 3. Temperature coefficient sensor (Ohm/°c)						
Aceto ne	AcetoneNitrile	Benzena	Chloroform	Ehtanol		
18	25	40	40	40		
18	40	30	26	26		
114	105	149	149	150		
224	348	510	452	483		
116	126	121	122	128		
176	185	185	180	177		
EthylAcetone	Methanol	nHexane	Toluena	Average		
40	40	40	41	36		
26	26	26	26	27		
146	140	144	146	138		
489	446	476	505	437		
130	136	143	146	130		
	Acetone 18 18 114 224 116 176 EthylAcetone 40 26 146 489	Acetone AcetoneNitrile 18 25 18 40 114 105 224 348 116 126 176 185 EthylAcetone Methanol 40 40 26 26 146 140 489 446	Acetone AcetoneNitrile Benzena 18 25 40 18 40 30 114 105 149 224 348 510 116 126 121 176 185 185 EthylAcetone Methanol nHexane 40 40 40 26 26 26 146 140 144 489 446 476	Acetone AcetoneNitrile Benzena Chloroform 18 25 40 40 18 40 30 26 114 105 149 149 224 348 510 452 116 126 121 122 176 185 185 180 EthylAcetone Methanol nHexane Toluena 40 40 41 26 26 26 26 146 140 144 146 489 446 476 505		

3.4 Sensor response to humidity

SQUALENE

In testing the humidity, polymer sensors are tested in the chamber in the varying humidity, in the fixed volume of gas and temperature. Table 4 and 5 show the result of the test. In the tables show that all polymer resistance increases with increasing humidity. The average percentage increase in the range 3,69% to 27,67% with the largest increase in polymer PEG1540 and smallest in the silicone.

182

In the Table 6 shows that all polymer resistance increases with increasing humidity. Average humidity coefficient (ohm/%) range at 27 ohms to 437 ohms with the largest increase in the polymer PEG1540 and the smallest in the PEG20M

Table 4. Percentage average increase of resistance to humidity

rable 1: 1 dicentage average increase of reciotance to name ty					
Polimer	Acetone	Aceto neNitrile	Benzena	Chloroform	Ethanol
PEG6000	0,40%	6,60%	4,11%	0,70%	5,87%
PEG20M	7,70%	11,26%	7,86%	3,90%	6,62%
PEG200	1,96%	13,03%	12,22%	1,68%	5,56%
PEG1540	12,05%	12,93%	32,30%	28,59%	40,46%
SILICONE	14,57%	5,73%	1,73%	1,64%	1,44%
SQUALENE	4,46%	6,12%	1,22%	3,80%	5,77%
	EthylAcetone	Methanol	nHexane	Toluena	%average
PEG6000	3,29%	3,51%	5,17%	6,36%	4,00%
PEG20M	3,01%	4,24%	4,72%	2,14%	5,72%
PEG200	11,87%	7,96%	1,40%	0,00%	6,19%
PEG1540	9,26%	31,46%	39,11%	42,91%	27,67%
SILICON	4,63%	1,66%	1,61%	0,23%	3,69%
SQUALENE	4,32%	1,71%	16,84%	7,15%	5,71%

Table 5. Humidity coefficient (ohm/%)

Polimer	Acetone	AcetoneNitrile	Benzena	Chloroform	Ethanol
PEG6000	18	25	40	40	40
PEG20M	18	40	30	26	26
PEG200	114	105	149	149	150
PEG1540	224	348	510	452	483
SILICONE	116	126	121	122	128
SQUALENE	176	185	185	180	177
	EthylAcetone	Methanol	nHexane	Toluena	average
PEG6000	40	40	40	41	36
PEG20M	26	26	26	26	27
PEG200	146	140	144	146	138
PEG1540	489	446	476	505	437
SILICONE	130	136	143	146	130
SQUALENE	181	175	188	190	182

4. Conclusion

The testing toward the type of gas shows how each gas is related to each polymeric chemiresistor. The test toward the volume of gas, the test toward the temperature and humidity shows that the resistance of the polymer increases as well as the rising of the volume of gas proportionally. Test toward temperature, type of polymer PEG1540 is experiencing the largest increase, with an average of 29% and the percentage of silicon is the type of polymer that has the slightest increase, with an average percentage of 3%. Test toward humidity, PEG1540 is a type of polymer, which had the largest increase, with an average of 27.69% and the percentage of silicon is the type of polymer that has the tiniest increase, with an average percentage of 3.69%.

Reference:

- [1] Atkins PW. Physical Chemistry. 4th ed. New York: W.H. Freeman. 1990.
- [2] Chung TC, Kaufman JH, Heeger AJ, Wudl F. Charge Storage in Doped Poly (thiophene): Optical and Electrochemical Study. Phys. Rev. B. 1984. 30(2): p. 702
- [3] Department of Chemical Engineering Brigham Young University. *Modeling and Data Analysis of Conductive Polymer Composite Sensors*. 2006.
- [4] Dian G, Barbey G, Decroix B. Electrochemical synthesis of polythiophenes and polyselenophenes. Synthetic Metals. 1986. 13(4): p. 281-289
- [5] Prayitno A, Kubumwe O, Bosma H, Tazelaar E. Efficiency of polymer electrolyte membrane fuel cell stack. TELKOMNIKA. 2011; 9(2): 303-310.
- [6] Zee F, Judy J. *MEMS Chemical Gas Sensor Using A Polymer-Based Array*. The 10th International Conference on Solid-State sensors and Actuators. June 7-10, Sendai, Japan. 1999.
- [7] Grodzinsksi Review Electronically Conductive Polymers, Polym.Adv.Technol, 615-625, Weizman Institute of Science, Rohovot, Israel. 2002.
- [8] BaiH, Shi G. Gas Sensors Based on Conducting Polymers. 2006.
- [9] Janata J, Josowicz M. Conducting Polymers In Electronic Chemical Sensors. 2002.
- [10] Kohlman RS, Epstein AJ. Insulator-Metal Transition and Inhomogeneous Metallic State in Conducting Polymers. Skotheim, Terje A.; Elsenbaumer, Ronald L., and Reynolds, John R., Editors. Handbook of Conducting Polymers. 2nd ed. New York: Marcel Dekker. 1998: 85-122.

280 ■ e-ISSN: 2087-278X

[11] Kankare J, Kupila EL. *In-situ conductance measurement during electro polymerization.* Journal of Electro analytical Chemistry. 1992; 322(1-2): 167-181

- [12] Nalwa HS. Handbook of Organic Conductive Molecules an Polymers. 1997; (4): 1-3.
- [13] Perepichka Fl. Light Emitting Poluthiophene, Weizman Institute of Science, Rohovot, Israel. 2006.
- [14] Persaud KC. Polymers for chemical sensing. Materials Today. 2005; 8(4): 38-44
- [15] Pratt C. Conducting Polymer, John Wiley & Sons, New Jersey. 1996.

Characterization of Polymeric Chemiresistors for Gas Sensor

ORIGINALITY REPORT

15% SIMILARITY INDEX

15%
INTERNET SOURCES

0% PUBLICATIONS

U% STUDENT PAPERS

PRIMARY SOURCES

1

adoc.pub
Internet Source

8%

2

www.journal.uad.ac.id

Internet Source

7%

Exclude quotes

On

Exclude matches

< 3%

Exclude bibliography