
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 7, No. 3, September 2017, pp. 861 ~ 866
DOI: 10.11591/ijeecs.v7.i3.pp861-866 861

Received May 17, 2017; Revised July 25, 2017; Accepted August 10, 2017

Performance of Parallel Computing in Bubble Sort
Algorithm

Rihartanto*
1
, Arief Susanto

2
, Ansar Rizal

3

1,3
Department of Information Technology, State Polytechnic of Samarinda, Jl. Cipto Mangunkusumo,

Kampus Gn. Lipan Samarinda Seberang, Samarinda, Indonesia 75112
2
Faculty of Engineering, Muria Kudus University, Gondangmanis Kudus Jawa Tengah, Indonesia, 59327

Corresponding author, e-mail: rihart.c@gmail.com*

Abstract
The performance of an algorithm can be improved using a parallel computing programming

approach. In this study, the performance of bubble sort algorithm on various computer specifications has
been applied. Experimental results have shown that parallel computing programming can save significant
time performance by 61%-65% compared to serial computing programming.

Keywords: Parallel Programming; Bubble Sort; OpenMP

Copyright © 2017 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
 Currently, many types of computers have multi-processor or multicore specifications
that allow computers to perform faster [1]. However, parallel processing methods that utilize
parallel programming in order to improve the computer performance can also be present. In
principle, parallel programming assigns tasks to cores in computer processors to speed up
queuing processes [2] or improve computing performance. Meanwhile, the measurement of
parallel programming performance is the speed (speed up).

Therefore, various methods can be used to work on parallel programming, including
Message Passing Interface (MPI) and OpenMP (Open Multi Processing). Several research with
OpenMP method has been used, among others [3] has implemented hybrid message passing
interface (MPI) and OpenMP method in distribution and sharing memory of each node. The
results have shown that OpenMP was good enough in constructing node structures in memory.
Then, [4] have utilized OpenMP to resolve bubble sort using Intel Core i7-3610QM, (8 CPUs).
The dataset was used HAMLET, PRINCE OF DENMARK. The results also showed that
OpenMP was fast enough using 8 threads. Then, [5] have also implemented MPI to solve
bubble and merge sort algorithms using Intel Core i7-3610QM, (8 CPUs). The results show that
MPI can complete the data structure was also quite fast.

In this paper, the OpenMP method will be used to solve the bubble sort. This paper
consists of four sections. Introduction explains the motivation of writing a paper. The second
section, the methodology is to describe the model used. The third part, the results and
discussion, and the final part is the conclusion of this study.

2. Methodology
2.1. OpenMP

OpenMP (Open Multi-Processing) is an application programming interface (API) that
contains a number of compiler drivers and libraries in order to support parallel programming.
The OpenMP (Open Multi-Processing) is an application programming interface (API) that
contains a number of compiler drivers and libraries to support parallel programming. The
OpenMP was developed for FORTRAN then C / C ++. The OpenMP API consists of three main
components, namely compiler directive, routine library runtime and environmental variable [6,7]
First, the compiler directive is used in order to show the part of the program to be done in
parallel. In C / C ++ this directive is declared with #pragma omp and with include file omp.h.
Second, the Runtime library provided in OpenMP includes omp_get_num_procs() to find out

 ISSN: 2502-4752

 IJEECS Vol. 7, No. 3, September 2017 : 861 – 866

862

the number of processors, omp_get_max_threads() to find out the maximum number of
threads allowed and omp_get_num_thread() to see which threads are active. Finally,
environment variables are used to control the parallel working environment, include
omp_num_thread, omp_dynamic and omp_nested, Figure 1.

Figure 1. OpenMP Components

OpenMP also uses a fork-and-join model parallelism process[6]. In general, each
program is run as a single process called parent thread. Whereas, the parallel thread is made
branched from the parent thread which does its respective and synchronized tasks. Then,
reassembled into the parent thread Figure 2.

Figure 2. Fork/Join Model

2.2. Bubble Sort Algorithm
One of the computer processes is sorting data. There are many algorithms for sorting

data such as bucket sort, bubble sort, insertion sort, selection sort, heapsort, merge sort, etc.
Where, each algorithm has advantages and disadvantages [4, 5], [8].

In this research, bubble sort algorithm without additional optimization will be used. The
bubble sort algorithm is chosen because it is easy to learn and implement. In general, bubble
sort works by comparing two array elements that are side by side, and exchanging data if given
conditions are met [4]. This process continues until there is no more data exchange. However,
bubble sort algorithm also has performance weaknesses such as algorithm complexity O(n

2
) for

worst case and average case, especially on large amount of data. While, the best performance
bubble sort is on the data that has been sorted O(1).

For example, sorting the smallest to largest values. Where, 5 element array contains of
"5 1 4 2 8". The bubble sort stages are as follows.
First stage:
(5 1 4 2 8) (1 5 4 2 8), swap 5 > 1.
(1 5 4 2 8) (1 4 5 2 8), swap 5 > 4
(1 4 5 2 8) (1 4 2 5 8), swap 5 > 2
(1 4 2 5 8) (1 4 2 5 8),
Second stage:
(1 4 2 5 8) (1 4 2 5 8)
(1 4 2 5 8) (1 2 4 5 8), swap 4 > 2
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation

IJEECS ISSN: 2502-4752

Performance of Parallel Computing in Bubble Sort Algorithm (Rihartanto)

863

Third stage:
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)

bbSort(int arr[], int n)

int i, j=0

bool swapped=true

swapped

swapped = false

return

 False

for i=0; i<n-j; i++

arr[i] > arr[i+i]

swapped = true

swap(arr[i], arr[i+1]

j++

i

 False

for i=0; i<n-j; i++

arr[i] > arr[i+i]

swapped = true

swap(arr[i], arr[i+1]

j++

i

 False

...

...

thread 0 thread nthread ...

Figure 3. Flowchart of parallel processing

Flowchart of parallel processing can be seen in Figure 3, that 0… n is total thread of
processors then created it by using OpenMP. Later, shared variable of arr[] and other variable
every thread.

2.3. Datasets

In this study, integer numbers generated with random functions and stored in text files
have been used. Each dataset consists of 100, 500, 1000, 2500, 5000, 10000, 15000, 25000,
50000 and 100000. Meanwhile, increasing the data size in order to obtain significant changes
by non-linier has been completed. Then, the bubble sort algorithm for serial and parallel sorting
has been applied.

 ISSN: 2502-4752

 IJEECS Vol. 7, No. 3, September 2017 : 861 – 866

864

3. Results and Discussion
In this experiment, serial and parallel processes with the bubble sort algorithm have

been applied. Meanwhile, two units of laptops with different specifications, especially low and
high processors have been used. First, a laptop with Intel Celeron (R) CPU processor N2920 @
1.86GHz Quadcore, 2GB RAM, Windows 8.1 Home SP1 64bit. Second, a laptop with Intel
processor specifications (R) Core™ i7-2620M CPU @ 2.70GHz Quadcore, 8GB RAM, Windows
XP Pro SP2 64bit. However, both processors have 4 cores.

The testing process by reading data from text file and storing it into an array with the
appropriate size has been prepared. After that, serial and parallel sorting processed were 10
times by using bubble sort algorithm have been applied. Meanwhile, second unit as a time
velocity measurement has been applied Figure 4.

In this experiment, 100 to 5000 datasets have a fast processing time of <1 sec in both
serial and parallel have been generated. Meanwhile, 100000 to 500000 datasets have parallel
processing time of 66% to 72% in unit 1, Figure 5, and 61% to 65% in unit 2 has been resulted,
Figure 6. Furthermore, 250000 and 500000 datasets were tested only on unit 2 which have
parallel processing time of 67% to 70% or 21.77 min have been resulted. This indicated that
parallel processes performance with large data sizes especially in the process time has been
able to be resolved quickly than the serial processes. Serial and parallel test results are shown
in Table 1.

Table 1. Comparison of serial and parallel sorting time

Datasets
Unit Test 1

time saving
Unit Test 2 time

saving
serial Parallel serial parallel

100 0.0000 0.0031 -0.31% 0.0000 0.0000 0.00%
500 0.0160 0.0031 80.63% 0.0016 0.0000 99.84%

1000 0.1250 0.0222 82.24% 0.0140 0.0016 88.57%
2500 0.7180 0.0202 97.19% 0.0295 0.0140 52.54%
5000 0.2891 0.1047 63.78% 0.1063 0.0469 55.88%

10000 1.1595 0.3938 66.04% 0.4421 0.1719 61.12%
15000 2.6250 0.8515 67.56% 1.0001 0.3642 63.58%
25000 7.2735 2.2111 69.60% 2.7890 0.9827 64.77%
50000 29.1202 8.3453 71.34% 11.1734 4.0062 64.15%

100000 116.7610 32.2123 72.41% 44.8110 15.4439 65.54%
250000 - - - 326.8910 104.7314 67.96%
500000 - - - 1306.3700 389.3852 70.19%

Figure 4. Time comparison of serial and parallel

-0.31%

80.63% 82.24%

97.19%

63.78% 66.04% 67.56% 69.60% 71.34% 72.41%

0.00%

99.84%

88.57%

52.54%
55.88%

61.12% 63.58% 64.77% 64.15% 65.54%

Time Comparison Serial and Parallel

Unit 1 (serial + paralel) Unit 2 (serial + paralel)

IJEECS ISSN: 2502-4752

Performance of Parallel Computing in Bubble Sort Algorithm (Rihartanto)

865

Figure 5. Time comparison of serial and parallel in unit 1

Figure 6. Time comparison of serial and parallel in unit 2

4. Conclusion
 Bubble sort algorithm for serial and parallel processing is presented. Based on results,
bubble sort algorithm using parallel processing have a good performance in sorting processes
especially in large data than serial processes. Performance optimization of parallel processes
by utilizing the whole processor core for future research.

References
[1] Xu M, Xu X, Yin M, Zheng F. Optimized Merge Sort on Modern Commodity Multi-core CPUs.

Telkomnika. 2016;14(1):309–18.
[2] Indrawan G, Sitohang B, Akbar S. Review of Sequential Access Method for Fingerprint Identification.

Telkomnika. 2012;10(2):335–42.
[3] Jin H, Jespersen D, Mehrotra P, Biswas R, Huang L, Chapman B. High performance computing

using MPI and OpenMP on multi-core parallel systems. Parallel Comput. 2011;37(9):562–75.

serial paralel

Unit 1

Comparison Unit 1 (Serial and Parallel)

serial paralel

Unit 2

Comparison Unit 2 (Serial and Parallel)

 ISSN: 2502-4752

 IJEECS Vol. 7, No. 3, September 2017 : 861 – 866

866

[4] Alyasseri ZAA, Al-Attar K, Nasser M. Parallelize Bubble Sort Algorithm Using OpenMP. Int J Adv Res
Comput Sci Softw Eng. 2014;4(1):2277–128.

[5] Alyasseri ZAA, Al-Attar K, Nasser M. Hybrid Bubble and Merge Sort Algorithms Using Message
Passing Interface. J Comput Sci Comput Math. 2015;5(4):66–73.

[6] OpenMP. OpenMP Application Program Interface. OpenMP Forum, Tech Rep. 2013;(July):320.
[7] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan and JM. Parallel Programming in OpenMP.

San Francisco: ACADEMIC PRESS; 2001. 249 p.
[8] Al-dabbagh SSM, Barnouti NH. Parallel Quicksort Algorithm using OpenMP. Int J Comput Sci Mob

Comput. 2016;5(July):372–82.

