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Abstract⎯ The marine ecosystem is vital for sustaining life on Earth, yet its vastness and complexity present significant 

challenges for effective monitoring and management. Integrated Marine Observing Systems (IMOS) have emerged as 

essential tools for understanding and protecting marine environments. This study aims to systematically review the 

integration of artificial intelligence (AI) into IMOS, focusing on its contributions to data processing, biodiversity 

monitoring, and environmental change analysis. A systematic literature review (SLR) method is employed to analyze 

existing research and identify key AI techniques and their applications in marine and oceanographic studies. Results 

indicate that deep learning is the most widely used AI method, with marine research being the primary application domain. 

Other areas, such as environmental monitoring and industrial systems, also demonstrate considerable potential. However, 

data inconsistency, operational limitations, and the lack of standardized frameworks remain significant barriers. This 

review highlights the transformative role of AI in enhancing IMOS capabilities and provides recommendations for 

addressing existing challenges to support sustainable marine management. 
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 I. INTRODUCTION1 

The marine environment serves as a cornerstone 

for sustaining life on Earth, playing vital roles in global 

climate regulation, biodiversity conservation, and 

supporting human livelihoods through economic 

activities such as fisheries, maritime transportation, and 

renewable energy. Oceans absorb approximately 25% of 

global carbon dioxide emissions annually, serving as a 

critical buffer against climate change [1]. However, the 

vastness, dynamic nature, and intricate interactions 

within marine ecosystems present significant challenges 

to effective monitoring and management [2]. These 

challenges are further exacerbated by the accelerating 

impacts of climate change and human activities, making 

the development of robust, efficient, and scalable 

observation systems an urgent necessity. 

Integrated Marine Observing Systems (IMOS) have 

emerged as a coordinated framework that integrates 

diverse observation platforms and technologies. These 

systems, including satellite remote sensing, autonomous 

underwater vehicles (AUVs), moored buoys, acoustic 

sensors, and ocean gliders, generate vast amounts of 

heterogeneous and high-dimensional data, providing 

critical insights into marine processes [3]. Despite the 

advancements in observation technologies, traditional 

analytical methods often struggle to process the 

complexity and volume of data generated by IMOS. This 

 
Soni Adiyono, department of Information Systems, Faculty of 

Engineering, Muria Kudus University, Indonesia. e-mail: 

soni.adiyono@umk.ac.id 

Muhammad Arifin, department of Information Systems, Faculty of 

Engineering, Muria Kudus University, Indonesia. e-mail: 

arifin.m@umk.ac.id 

Noor Latifah, department of Information Systems, Faculty of 

Engineering, Muria Kudus University, Indonesia. e-mail: 

noor.latifah@umk.ac.id 

Eko Darmanto, department of Information Systems, Faculty of 

Engineering, Muria Kudus University, Indonesia. e-mail: 

eko.darmanto@umk.ac.id 

limitation has driven the increasing integration of 

Artificial Intelligence (AI) technologies into IMOS, 

offering transformative approaches to address these 

challenges [4]. 

AI has demonstrated significant potential in various 

marine applications, including biodiversity monitoring, 

ocean dynamics prediction, and environmental anomaly 

detection. For instance, machine learning (ML) 

algorithms have been employed to analyze satellite 

imagery for mapping harmful algal blooms and tracking 

ocean currents [5]. Similarly, deep learning (DL) models 

have revolustionized underwater image classification, 

enabling automated identification of marine species and 

habitats and analyzing acoustic signals to monitor marine 

mammal behaviors and detect illegal fishing activities 

[6]. These advancements have enhanced the operational 

efficiency of marine observing systems and provided 

actionable insights for marine conservation and resource 

management. 

However, integrating AI into IMOS faces several 

critical challenges. Data quality and consistency across 

diverse observation platforms remain problematic, as 

incomplete or biased datasets can compromise the 

reliability of AI models [2]. The harsh and variable 

conditions of marine environments impose operational 

constraints, requiring robust algorithms capable of 

handling noise, missing data, and unpredictable changes 

in data streams [7]. Additionally, the absence of 

standardized frameworks for implementing AI 

technologies hinders interoperability, reproducibility, 

and scalability across different observing systems [2]. 

Beyond technical challenges, ethical considerations 

are becoming increasingly important in the adoption of 

AI in marine sciences. Issues such as algorithmic 

transparency, equitable access to AI technologies, and 

the potential for misuse of sensitive marine data require 

careful governance and regulation [1]. Additionally, the 

deployment of AI systems must align with broader goals 

of sustainable development, ensuring that technological 
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advancements benefit both science and society equitably 

[7]. The novelty of this study lies in its comprehensive 

analysis of the integration of AI technologies into IMOS. 

While previous studies have explored individual aspects 

of AI applications in marine sciences, this review 

systematically examines the scientific progress, trends, 

and advancements in AI methods and their applications 

in IMOS. Specifically, this study aims: 

 

1. To provide a comprehensive overview of AI's 

scientific contributions in the context of IMOS. 

2. To analyze the distribution and roles of diagnostic 

instruments utilized in scientific assessments within 

IMOS. 

3. To investigate research trends in AI methods applied 

to IMOS, highlighting advancements and identifying 

gaps. 

 

By addressing both the technological achievements 

and existing challenges, this review seeks to contribute 

valuable insights for the future development of 

sustainable and effective marine observation systems. 

II. METHOD 

The integration of artificial intelligence (AI) into 

Integrated Marine Observing Systems (IMOS) represents 

a growing field of research aimed at addressing the 

challenges posed by the vastness, complexity, and 

dynamic nature of marine ecosystems. This review 

systematically examines the scientific advancements, 

applications, and challenges associated with AI 

technologies in IMOS, adhering to the objectives of 

providing a comprehensive overview, analyzing 

diagnostic instruments, and investigating research trends. 

This research adopts a comprehensive systematic 

literature review (SLR) methodology, analyzing data 

extracted from prestigious international journals indexed 

in Scopus from 2019 to 2024. The SLR methodology 

implements a rigorous and structured approach to 

information gathering, identification, and synthesis of 

pertinent articles and literature from previous research 

[8]. This methodical process enables researchers to 

thoroughly examine and analyze all relevant studies to 

address emerging research questions within the field 

[9][10]. The methodology section employs the PRISMA 

framework to conduct the systematic literature review, 

providing a comprehensive checklist that ensures the 

evaluation of quality and depth in systematic reviews and 

meta-analyses [11]. The PRISMA framework has gained 

widespread recognition and endorsement from leading 

journals and academic institutions as an effective tool for 

enhancing the quality of research reviews [12]. 

The research methodology encompasses a detailed 

review of existing literature, synthesizing topic relevance 

through comprehensive analysis and evaluation of 

various smart port concept clusters and associated 

research domains. The implementation follows a 

structured six-phase approach: literature review 

planning, database selection, inclusion and exclusion 

criteria establishment, article selection, weighted 

analysis of chosen articles, and detailed indicator 

specification. This systematic and transparent literature 

review process adheres to a structured methodology that 

guides researchers from the initial identification phase 

through to the final interpretation of all relevant studies 

[13] [14]. 

 

A. Overview of AI in Marine Observing Systems 

AI technologies have demonstrated transformative 

potential in marine sciences, particularly in processing 

large-scale, heterogeneous datasets generated by IMOS. 

Studies from recent years reveal that AI applications 

extend across multiple domains, such as biodiversity 

monitoring, environmental anomaly detection, and 

predictive modeling of ocean dynamics. Machine 

learning (ML) techniques have been widely employed 

for tasks like satellite-based ocean monitoring and algal 

bloom detection, while deep learning (DL) models are 

frequently applied in underwater image classification and 

acoustic signal analysis [1][5][6]. The application of 

hybrid AI approaches, though less explored, shows 

promise in addressing more complex, multifaceted 

challenges in marine observation. 

 

B. Progress and Trends in AI Methods 

Recent literature highlights a consistent increase in 

the adoption of AI methods in IMOS. From 2019 to 

2024, studies indicate a dominant use of supervised and 

unsupervised learning techniques, with notable 

advancements in convolutional neural networks (CNNs) 

 
Figure 1. Scopus-Based Iterative Filtering and Classification Methodology 



International Journal of Marine Engineering Innovation and Research, Vol. 10(1), March. 2025. 155-164 

(pISSN: 2541-5972, eISSN: 2548-1479) 

157 

 
for image-based applications and recurrent neural 

networks (RNNs) for time-series data analysis [7][9]. 

There has also been significant progress in the use of 

reinforcement learning for optimizing autonomous 

underwater vehicle (AUV) navigation and ocean glider 

path planning. These advancements have enhanced the 

operational efficiency of IMOS while providing 

actionable insights for marine resource management and 

conservation. 

 

C. Challenges in AI Integration 

Despite the progress, several challenges persist in 

integrating AI into IMOS. Data quality and consistency 

remain significant barriers, as marine observation 

systems generate data that are often incomplete, noisy, or 

inconsistent across platforms [2][7]. Operational 

constraints, such as the harsh and variable conditions of 

marine environments, necessitate the development of 

robust and adaptable AI algorithms. Additionally, the 

lack of standardized frameworks for implementing AI 

technologies limits their interoperability and scalability, 

hindering broader adoption in IMOS [10]. Ethical 

concerns, including data privacy, algorithmic 

transparency, and equitable access to AI technologies, 

further complicate the integration process and require 

careful governance. The literature identifies several 

underexplored areas with significant potential for future 

research. For example, the adoption of hybrid AI models, 

which combine machine learning and deep learning 

techniques, remains limited but holds promise for 

improving real-time anomaly detection and multi-

domain applications. Similarly, the integration of AI 

with Internet of Things (IoT) devices in IMOS offers 

opportunities for real-time data collection and analysis 

but has yet to be fully realized. Geographic and thematic 

analyses reveal a need for greater research focus on 

deep-sea ecosystems and regions with limited 

observational coverage. 

While previous reviews have addressed specific 

aspects of AI in marine sciences, this study provides a 

comprehensive and systematic analysis of AI's role 

within IMOS. By employing a structured systematic 

literature review (SLR) methodology, this research 

synthesizes findings from a broad range of high-impact 

studies to uncover patterns, trends, and gaps in the field. 

Additionally, the study employs advanced visualization 

techniques to map the interconnectedness between AI 

methods, application domains, and research themes, 

offering novel insights that support data-driven decision-

making in marine observation. 

 

D. Source Data Collection 

 
(a) 

   
(b)            (c) 

Figure 2. Network Visualization of AI Applications and Techniques in Marine Observation Research 
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The first phase focuses on systematically collecting 

data from the Scopus database. The process begins with 

an initial search using fundamental keywords relevant to 

the research topic, yielding a total of 10,327 documents. 

To narrow down the scope, additional filters are applied, 

including a time range filter (2019–2024), which reduces 

the dataset to 5,482 documents. 

Subsequently, the results are further refined by 

applying a subject filter, focusing specifically on the 

field of computer science, which narrows the dataset to 

499 documents. Finally, additional filters for document 

type (articles only) and language (English) are applied, 

reducing the dataset to 280 documents. Among these, 

documents containing specific keywords related to 

Artificial Intelligence (AI) and Machine Learning are 

identified, resulting in a final selection of 132 documents 

for further analysis in subsequent phases. [8][10]. 

 

E. Data Refinement 

The second phase involves refining the collected data 

to enhance its relevance and usability. This is achieved 

by classifying the documents into two primary domains: 

the application domain and the AI techniques domain. 

Classification by application domain categorizes the 

documents based on their relevance to specific 

application areas, such as environmental monitoring, 

resource management, or ocean dynamics prediction. 

Simultaneously, classification by AI techniques 

ensures that various methodologies, including machine 

learning, deep learning, or hybrid approaches, are 

appropriately categorized. This process aims to create a 

structured dataset that facilitates targeted analysis in the 

next phase. Additionally, quality assessment is conducted 

to ensure that only high-quality and relevant documents 

are included, thereby strengthening the reliability of the 

subsequent analysis. Figure 2 provides a comprehensive 

and systematic visualization of the relationships between 

research keywords, application domains, and AI 

techniques in marine observation research. It is divided 

into three distinct subfigures that collectively illustrate 

the progression of data refinement, as described in Phase 

II. These subfigures enable a clearer understanding of the 

interconnectedness within the field while highlighting 

specific trends and gaps. Subfigure (a): Complete 

Network Analysis of Research Keywords and 

Relationships This subfigure offers a holistic view of the 

research landscape by mapping the interconnections 

between various keywords, methodologies, and 

application areas. The network reveals the breadth of 

research themes, such as biodiversity monitoring, 

environmental anomaly detection, and predictive 

modeling of ocean dynamics. It identifies frequently co-

occurring keywords, showcasing the dominant trends 

and the central focus areas within the field. Subfigure 

(b): Clustered Network Visualization of Application 

Domains and AI Techniques. In this subfigure, the 

network is refined to show the clustering of specific 

application domains (e.g., marine biodiversity, resource 

management) and the AI techniques employed (e.g., 

machine learning, deep learning). The clusters highlight 

the strong associations between certain AI techniques 

and their preferred domains of application. For instance, 

deep learning is prominently linked to underwater image 

analysis, while machine learning is closely associated 

with satellite-based ocean monitoring. This visualization 

emphasizes how distinct methodologies are tailored to 

address specific challenges in marine observation. 

Subfigure (c): Focused Network Analysis of Key 

Implementation Areas. 

The final subfigure narrows the scope further, 

providing a detailed analysis of key implementation 

areas where AI technologies are actively deployed. This 

focused visualization highlights specific research gaps, 

emerging trends, and underexplored opportunities. For 

example, it may underscore the limited use of hybrid AI 

models in real-time anomaly detection or the nascent 

adoption of AI in deep-sea ecosystem monitoring. 

 

F. Topic Analysis and Evaluation 

 This phase involves analyzing the refined data 

using a Topic Analysis Relevance Evaluation Matrix. 

The matrix helps identify patterns, trends, and 

relationships across the application domains and AI 

techniques. The primary objective is to uncover key 

research themes, such as the development of AI 

algorithms for biodiversity monitoring or the integration 

of AI-driven technologies into existing marine 

observation systems. The evaluation also assesses the 

consistency and relevance of topics while determining 

the contributions of individual documents to the broader 

field of research. This stage provides valuable insights 

into existing research gaps and emerging opportunities, 

laying the groundwork for visual representation and 

reporting in the final phase. 

 

G. Visualization and Reporting 

The final phase focuses on visualizing and reporting 

the findings. The analyzed information is transformed 

into comprehensive reports featuring graphical 

representations, charts, and tables for easy interpretation. 

These visualizations include trends in research across 

application domains and AI techniques, thematic maps of 

relevant documents, and insights into the contributions of 

studies toward addressing global challenges in marine 

observation. Moreover, the final report is designed to 

support data-driven decision-making. It serves as a 

resource for academics, policymakers, and conservation 

organizations, enabling them to identify research 

priorities and formulate effective strategies for managing 

marine environments using AI technologies. With clear 

and structured reporting, this phase concludes the 

research process by delivering actionable and impactful 

insights. 

III. RESULTS AND DISCUSSION 

A. AI Transformations in Marine Observing Systems 

The rapid integration of Artificial Intelligence (AI) 

into Integrated Marine Observing Systems (IMOS) has 

significantly enhanced our ability to monitor and 

understand marine ecosystems. This analysis provides a 

comprehensive overview of AI's scientific progress and 

contributions in IMOS by examining geographical 

distribution, international collaborations, and temporal 

trends in research development. Key insights reveal the 
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dominance of major contributors like the United States 

and China, the rise of Southeast Asian nations in the 

field, and a shift from foundational studies to advanced, 

application-driven innovations. Figure 3 These findings 

underscore AI's transformative impact on IMOS and 

highlight the importance of global partnerships in 

advancing this critical domain. 

 

A.1. Geographical Patterns and International 

Collaboration 

 

TABLE 1. 

CLASSIFICATION OF RESEARCH BASED ON APPLICATION DOMAIN 

Source Source 

Marine and Oceanography 
[15], [16], [17], [18], [19], [20], 

[21], [22], [23], [24], [25], [26] 

Environmental Monitoring and 

Climate Change 
[27], [28], [29], [30], [31], [32] 

Industrial and Engineering 

Systems 
[33], [34], [35], [36], 

Artificial Intelligence and 

Computational Methods 

[37], [38], [39], [40], [41], [42], 

[43], [44] 

Animal and Biological Research [45], [46] 

 

 
(d) 

   
(e)            (f) 

 

Figure 3. Visualizing Network of Geographical, Temporal, and Collaborative Trends in AI-driven Research for Integrated Marine 

Observing Systems (IMOS) 
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As depicted in subfigure (a), the United States and 

China emerge as dominant contributors to the 

advancement of AI applications in IMOS, reflecting their 

leadership in marine technology and AI innovation. 

Additionally, significant research contributions are 

observed from Southeast Asian nations, particularly 

Indonesia and the Philippines, which play a growing role 

in regional marine observation initiatives. This 

geographical distribution highlights the presence of a 

robust international collaborative framework in the 

development of AI-driven marine observation systems. 

The density mapping in subfigure (b) further 

emphasizes the concentration of research activity in 

specific regions. Larger nodes representing China and 

the United States signify these nations' substantial 

research outputs, establishing them as pivotal knowledge 

hubs in the field. The dense interconnecting lines 

between these nodes illustrate strong international 

collaboration networks, underscoring the importance of 

cross-border partnerships and knowledge sharing in 

advancing AI solutions for marine observation. 

 

A.2. Temporal Trends and Research Evolution 

Subfigure (c) offers an analysis of the temporal 

evolution of research activities from 2021 to 2023. It 

highlights an upward trend in research volume and 

complexity over time. Early efforts focused on 

foundational studies aimed at exploring the potential of 

AI in marine observation. However, more recent 

developments demonstrate a shift toward advanced 

applications, including system integration, real-time 

monitoring, and ecosystem modeling. This chronological 

progression indicates the growing sophistication and 

practical applicability of AI technologies within IMOS. 

 

A.3. Implications and Future Directions 

The insights derived from this network visualization 

underscore the global maturity and reach of AI research 

in IMOS. The field has transitioned from isolated studies 

to a dynamic, interconnected network of international 

collaborations, with major maritime nations driving these 

efforts. Recent research trends demonstrate a growing 

emphasis on practical applications and system 

integration, marking a shift away from purely theoretical 

frameworks. Furthermore, the geographical diversity of 

research activities suggests that future advancements in 

AI-driven marine observation systems will continue to 

benefit from the exchange of global expertise and 

perspectives. International collaboration remains a 

critical factor in addressing the complex challenges of 

monitoring and managing marine ecosystems at a global 

scale. The network visualization reveals the significant 

progress achieved in the application of AI within IMOS. 

It highlights the transformative potential of AI 

technologies in enhancing marine observation systems 

while emphasizing the essential role of international 

partnerships in fostering innovation and driving the field 

forward. 

 

B. AI Transformations in Marine Observing Systems 

In the context of AI transformations in Integrated 

Marine Observing Systems (IMOS), the research 

landscape reveals a diverse set of application domains, 

each contributing to the advancement of marine science 

and technology. Table 1 categorizes the research sources 

across five key domains: Marine and Oceanography, 

Environmental Monitoring and Climate Change, 

Industrial and Engineering Systems, Artificial 

Intelligence and Computational Methods, and Animal 

and Biological Research. 

The largest body of research falls under Marine and 

Oceanography, with sources [15] to [26], highlighting 

AI's crucial role in advancing the monitoring and 

understanding of marine ecosystems, ocean dynamics, 

and coastal environments. These studies demonstrate 

how AI techniques such as machine learning, image 

recognition, and predictive modeling are being applied to 

analyze oceanographic data and improve decision-

making in marine conservation. Environmental 

Monitoring and Climate Change research, represented by 

sources [27] to [32], showcases AI's contributions to 

climate prediction models, ecosystem health 

assessments, and the monitoring of environmental 

variables affecting marine life. The integration of AI 

methods enables real-time data processing and more 

accurate forecasts, enhancing efforts to mitigate climate 

change impacts on marine environments. 

The Industrial and Engineering Systems domain 

(sources [33] to [36]) reflects the use of AI in optimizing 

operational efficiency in marine industries, including 

shipping, fisheries, and energy production. AI methods 

like optimization algorithms, autonomous systems, and 

sensor networks are enhancing the functionality of IMOS 

by supporting resource management and improving 

system reliability. Research in Artificial Intelligence and 

Computational Methods (sources [37] to [44]) 

emphasizes the development and application of AI 

techniques tailored specifically for IMOS, such as 

advanced data analytics, deep learning, and neural 

networks. These studies underline the increasing 

sophistication of AI in processing large datasets, 

identifying patterns, and automating marine monitoring 

processes. Finally, Animal and Biological Research 

(sources [45] to [46]) demonstrates how AI is being 

utilized to monitor marine biodiversity, track animal 

movements, and assess ecosystem health. AI's ability to 

analyze biological data from various sensors and satellite 

technologies is providing new insights into marine 

species behaviors and population dynamics, crucial for 

conservation and management efforts. 

In analyzing the distribution and application of 

various diagnostic instruments in the Integrated Marine 

Observing System (IMOS), with a focus on its function 

in scientific assessment studies related to the marine 

environment. Figure 4 presents a mind map that provides 

a comprehensive overview of the various applications of 

the Marine Observing System, illustrating its 

contribution in various sectors related to the management 

and monitoring of the marine environment. The Marine 

Observing System plays a vital role in environmental 

monitoring, providing important data on pollution levels, 

salinity, air quality, temperature, sea level rise, ocean 

acidification, and climate change. These parameters are 

essential for understanding the environmental challenges 
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faced by marine ecosystems, as well as providing 

information needed for better environmental policy-

making. In addition, this system is also used to maintain 

marine ecosystems, including habitat monitoring, species 

tracking, and biodiversity assessment. These activities 

are essential for the conservation and management of 

marine life and its habitats. 

In the maritime operational sector, this system 

supports ship habitat, traffic management, navigation 

safety, port management, cargo handling, weather 

forecasting, route optimization, and storm prediction. 

These applications improve the efficiency and safety of 

maritime operations, contributing to the smooth and 

efficient operation of the sector. In marine resource 

management, the data provided by the Ocean 

Observation System is essential for integrating marine 

mining activities and supporting sustainable marine 

resource management. 

Coastal management is also a crucial application 

area, where the system contributes to erosion control and 

maintenance of coastal infrastructure. The information 

provided by the system is essential for planning and 

implementing effective coastal management strategies. 

In the fisheries sector, the Ocean Observation System is 

used for aquaculture management, stock assessment and 

catch prediction. These applications support the 

sustainable management of fish resources and optimize 

fisheries activities. Finally, in the energy sector, the 

system is used for the exploration and utilization of 

marine energy resources, such as offshore wind energy 

and wave energy. The data generated supports the 

development and operation of renewable energy projects, 

which are essential in the global transition to more 

sustainable energy sources. The mind map presented in 

Figure 4 illustrates the importance of the Ocean 

Observation System in these sectors, which also 

contribute to scientific assessment studies under IMOS, 

strengthening the understanding and holistic 

management of the marine environment. 

 

C. Trends and Advancements in AI Methods for IMOS 

 Table II presents the classification of artificial 

intelligence (AI) techniques based on their application 

domains, by grouping research into three main 

categories: Machine Learning Based, Deep Learning: 

Knowledge Based, and Specialized AI Techniques: 

Vision Based. Each category refers to a different AI 

approach or technique, which is used to solve various 

problems in a specific field. This table illustrates the 

variety of AI techniques applied in scientific research, 

showing how these technologies are used in different 

domains to solve complex problems. 

 

C.1. Machine Learning Based 

The first category includes research that applies 

machine learning techniques to data analysis and 

processing. These techniques are commonly used to 

identify patterns in data, classify objects, and predict 

 

TABLE II. 

CLASSIFICATION BASED ON AI TECHNIQUES DOMAIN 

Source Source 

Machine Learning Based 
[15], [33], [18], [21], [28], [29], 

[30], [23], [45], [43], [31], [35] 

Deep Learning: Knowledge 

Based 

[37], [38], [39], [16], [17], [40], 

[41], [34], [19], [20], [22], [24], 

[46], [25] 

Specialized AI Techniques: 

Vision Based 
[27], [42], [44], [36], [32], [26] 

 

 
  Figure 4. Distribution and Application of Ocean Observation Systems in IMOS 
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outcomes based on existing datasets. Research in this 

category includes a variety of methods, such as 

supervised learning, unsupervised learning, and 

reinforcement learning, which are applied in various 

domains, such as recommendation systems, big data 

analysis, and behavior prediction. 

 

C.2. Deep Learning: Knowledge Based 

The second category is knowledge-based deep 

learning techniques, which involve the use of deep 

neural networks and other model architectures to handle 

large and complex amounts of data. These techniques are 

often used to develop systems that require deeper 

contextual understanding, such as in natural language 

processing, speech recognition, and text analysis. Unlike 

machine learning, deep learning is able to handle more 

complex and unstructured data in a more efficient and 

accurate manner. 

 

C.3. Specialized AI Techniques: Vision Based 

The third category refers to more specific AI 

techniques, namely vision-based, which are used for 

applications in image and video processing. These 

techniques, which include computer vision and image 

processing, are used for visual analysis, object 

recognition, and tracking in images or videos. These 

applications are widely used in various industries, such 

as video surveillance, automatic object detection, and 

medical image analysis. 

To investigate the distribution of research focused on 

the application of AI methods in Intelligent 

Manufacturing Operating Systems (IMOS), a detailed 

analysis of the classification and implementation of AI 

approaches is provided. Based on Figure 5, the 

visualization highlights the diverse methodologies 

employed within this domain, categorized into three 

primary domains: vision-based systems, machine 

learning-based approaches, and knowledge-based 

systems. These categories illustrate the multifaceted 

nature of AI applications in manufacturing operations. 

The vision-based domain includes technologies such as 

image processing, pattern recognition, feature extraction, 

object detection, video analytics, and motion analysis. 

These technologies play a critical role in addressing key 

operational challenges such as quality control, product 

inspection, and process monitoring, highlighting the 

importance of visual data in intelligent manufacturing 

workflows. 

In the machine learning domain, significant advances 

are evident in methodologies such as neural networks, 

support vector machines, supervised and unsupervised 

learning, clustering, anomaly detection, deep learning, 

and time series analysis. These methods are widely 

applied in predictive maintenance, process optimization, 

and quality prediction, demonstrating their versatility 

and centrality in intelligent manufacturing research. The 

knowledge-based domain incorporates decision support 

systems, fuzzy logic, rule-based systems, and reasoning 

  
 

Figure 6. Distribution and AI Techniques in Marine Observation System Research Based on Application Domains 

 
  Figure 5. Distribution AI methods applied in research IMOS 



International Journal of Marine Engineering Innovation and Research, Vol. 10(1), March. 2025. 155-164 

(pISSN: 2541-5972, eISSN: 2548-1479) 

163 

 
mechanisms. These technologies are particularly 

effective in complex decision-making processes and the 

development of expert systems, offering structured 

solutions to intricate operational challenges. The 

distribution of these AI methods reflects a balanced and 

strategic approach to addressing the multifarious 

demands of modern manufacturing environments. The 

interconnected nature of these approaches, as depicted in 

the visualization, highlights a growing trend toward 

hybrid systems that combine multiple methodologies to 

achieve robust and comprehensive solutions. 

Furthermore, the emphasis on practical applications 

across these domains indicates the maturity of the field, 

with research efforts aligning closely with real-world 

manufacturing challenges. This systematic integration of 

AI into IMOS underscores the evolution of intelligent 

manufacturing, providing a foundation for future 

advances in the field. 

Based on Figure 6, several key insights can be drawn 

regarding the distribution of research domains and AI 

techniques employed in Marine Observing Systems. In 

terms of application domains, Marine and Oceanography 

emerges as the most prominent focus, accounting for the 

highest percentage (12; ≈ 35%), indicating a significant 

emphasis on ocean monitoring and marine research. This 

highlights the priority given to understanding and 

observing marine ecosystems. Environmental 

Monitoring and Climate Change ranks second (6; ≈ 

17%), underscoring the importance of using marine 

observing systems to address environmental challenges 

and track climate change impacts. Industrial and 

Engineering Systems also play a significant role (8; ≈ 

23%), reflecting the application of these systems in 

industrial and engineering contexts. Meanwhile, 

Artificial Intelligence and Computational Methods and 

Animal and Biological Research show lower values (5; ≈ 

14% and 2; ≈ 6%, respectively), indicating limited but 

emerging applications in these areas. 

In terms of AI techniques, Deep Learning: 

Knowledge-Based dominates with the highest value and 

percentage (14; ≈ 45%), showcasing its critical role in 

advancing marine observing systems through 

knowledge-driven deep learning applications. Machine 

Learning-Based techniques also exhibit substantial usage 

(10; ≈ 30%), highlighting their versatility in handling 

various tasks such as predictive modeling and data 

analysis. Conversely, Specialized AI Techniques: 

Vision-Based has the lowest representation (6; ≈ 20%), 

suggesting a less frequent but targeted application in 

visual data processing tasks. 

Overall, Figure 6 highlights that marine and 

oceanographic applications, alongside knowledge-based 

deep learning techniques, are the primary areas of focus 

in research on marine observing systems. While other 

domains, such as environmental monitoring and 

industrial systems, also contribute significantly, areas 

like vision-based AI and biological research remain 

underrepresented, offering potential avenues for future 

exploration and development. 

IV. CONCLUSION 

This study provides a comprehensive overview of 

AI's scientific progress and contributions in the context 

of Intelligent Manufacturing Operating Systems (IMOS). 

The findings highlight significant advances in AI 

methodologies, with a notable emphasis on vision-based 

systems, machine learning-based approaches, and 

knowledge-based systems. Among these, machine 

learning techniques, particularly deep learning, emerge 

as the most widely adopted, reflecting their pivotal role 

in predictive maintenance, process optimization, and 

quality prediction within IMOS. Furthermore, the 

distribution of research indicates a strong focus on 

diagnostic instruments applied across key domains, 

including manufacturing process monitoring, quality 

control, and decision support systems. The dominance of 

marine and oceanographic applications suggests a 

prioritization of specific scientific assessments, while 

other domains, such as environmental monitoring and 

industrial systems, show substantial but less prominent 

contributions. This analysis also identifies trends in 

hybrid AI implementations, where multiple 

methodologies are integrated to address complex 

challenges, signaling the field's maturity and its 

trajectory toward more robust and comprehensive 

solutions. These findings underscore the strategic 

integration of AI in IMOS and provide valuable insights 

into the distribution and advancements of AI-driven 

research in this field. 
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